Sophie Mazard

Event Date: 
Wednesday, March 28, 2012 - 18:15 - 18:30
Macquarie University

Making and breaking dimethylsulfide in salt marsh sediments


DMSP (dimethylsulfoniopropionate) is a key organic compound in the sulfur cycle with ~10^9 tons of this anti-stress compatible solute being made each year by marine phytoplankton, macro-algae and some salt marsh plants. The DMSP that is liberated is catabolised in a series of different microbial reactions that comprise a massive set of biotransformations in the global sulfur cycle. Some of the reaction products, such as DMS (dimethylsulfide), have major environmental consequences in their own right, from climate regulation to animal behaviour. Our work investigates microbial populations that cycle DMSP and DMS in coastal intertidal sediments. Combining geochemical and molecular biological approaches, such as stable isotope probing (SIP) and targeted high throughput sequencing, we are identifying the main microbial players that catabolise DMSP and DMS in oxic and anoxic parts of intertidal sediments alongside the key genes and cognate biochemical pathways that contribute to the turnover of these influential molecules. Early work led to the observation of a vertical microbial population structure within the salt marsh sediment, partially linked to the sulfur cycle biochemistry of this ecosystem. SIP experiments are allowing the characterisation of active microbial processing of DMSP and DMS compounds by separate new bacterial groups, closely associated to salt marsh plants and within the oxic sediment layer. This work is filling in major gaps in our knowledge of the global organic S cycle and the role of microbial populations in major environmental biochemical processes.