Event Date: 
Wednesday, March 27, 2013 - 18:15 - 18:30
Hawkesbury Institute for the Environment, University of Western Sydney

Effect of Huanglongbing on the structure and functional diversity of microbial communities associated with citrus.


Plant-microbe interactions lie at the heart of plant performance and ecology. It has been postulated that disruption of multi-trophic interactions in a stable ecosystem under the influence of invading phytopathogens will cause community reorganization and changes in the local feedback interactions. However, there is a paucity of knowledge on the extent to which such community shifts may occur, on the dynamics of changes and on the putative effects regarding the functioning of ecosystems. We have used Citrus-‘Candidatus Liberibacter asiaticus’ [Las, causal agent of devastating Huanglongbing (HLB) disease] as a host pathogen model to characterize the structure, function and interactions of plant-associated microbial communities. We applied a suit of metagenomic techniques to provide detailed census of citrus associated microbiomes. Our results confirmed that Las is the sole causal agent of HLB in Florida and revealed that HLB significantly re-structures the composition of native microbial community present either in leaf, roots and rhizosphere of citrus. Functional microarray (Geochip) and shotgun metagenomic sequencing showed that HLB has severe effects on various functional guilds of bacteria involved in key ecological processes including nitrogen cycling and carbon fixation. Overall, the metagenomic studies provided evidence that change in plant physiology mediated by Las infection could elicit shifts in the composition and functional potential of plant associated microbial communities. In the long term, these fluctuations might have important implications for the productivity and sustainability of citrus producing agro-ecosystems.

Syndicate content