Sewage treatment

Event Date: 
Wednesday, February 25, 2015 - 15:30 - 16:00
Institution: 
University of California Davis
Title: 

Stress, function and community dynamics in wastewater bioreactors

Abstract: 

Biological wastewater treatment plants receive a complex mixture of chemicals and are operated based on principles of general microbial growth kinetics. Regulated effluent criteria determine the extent of treatment required to achieve removal of chemical oxygen demand and nutrients like reduced nitrogen and phophate. Plants are, however, not designed to metabolize specific (micro)pollutants, and the factors influencing the emergence of microbial communities that are tolerant of or have evolved to metabolize and remove toxic compounds are poorly understood. Basic questions in wastewater engineering include ‘What affects the dynamics of wastewater microbial communities?’  and ‘Are communities ever stable and if so does this matter for basic processes like removal of organics and nutrients?’.  
We investigated the impact of defined and sustained chemical stress on wastewater microbial communities and their functions, using the highly toxic and recalcitrant compound 3-chloroaniline (3-CA) as model stressor. Experimental design included replicate bioreactors, sterile synthetic feed, ambient levels of 3-CA, and fixed factors like bioaugmentation and temperature. Process outcomes varied from no removal of 3-CA to complete removal within three weeks. Community changes were dramatic and nitrification was a key function affected by the stressor. Finally, microbial diversity indices based on 16S rRNA gene amplicon sequencing or T-RFLP, combined with influent nutrient concentrations, were used to predict effluent concentrations using support vector regression, a machine learning model. Sensitivity analysis of a preliminary dataset for a full-scale water reclamation plant would suggest that evenness is the most significant input variable for the prediction of soluble COD, nitrate and ammonium concentrations in the effluent. Overall, we show that both detailed analysis of taxonomy and gene expression and general indices of diversity are useful for understanding the link between stable process performance and microbial communities.

Event Date: 
Wednesday, May 29, 2013 - 18:15 - 18:30
Institution: 
Macquarie University
Title: 

Dissemination of antibiotic resistance determinants via sewage discharge from Davis Station, Antarctica

Abstract: 

Discharge of untreated or macerated sewage presents a significant risk to Antarctic marine ecosystems by introducing non-native microorganisms that potentially impact microbial communities and threaten health of Antarctic wildlife. Despite these risks, disposal of essentially untreated sewage continues in the Antarctic and sub-Antarctic. As part of an environmental impact assessment of the Davis Station, we investigated carriage of antibiotic resistance determinants in Escherichia coli isolates from marine water and sediments, marine invertebrates (Laturnula and Abatus), birds and mammals within 10 km of the Davis sewage outfall. Class 1 integrons typical of human pathogens and commensals were detected in 12% of E. coli isolates. E. coli carrying these integrons were primarily isolated from the near shore marine water column and the filter feeding mollusc Laturnula. Class 1 integrons were not detected in E. coli isolated from seal (Miroungaleonina, Leptonychotes weddellii) or penguin (Pygoscelis adeliae) feces. However, isolation of E. coli from these vertebrates’ faeces was also low. Consequently, sewage disposal is introducing non-native microorganisms and associated resistance genes into the Antarctic environment. The impact of this “gene pollution” on the diversity and evolution of native Antarctic microbial communities is unknown. 

 

Syndicate content