Nanotechnology

You are invited to the Sydney Next Generation Sequencing Special Interest Group Meeting,  which will be held at the University of Technology, Sydney.
 
Speakers: 
A/Prof Aaron Darling (ithree Institute, UTS), MinIONs & Hi-C: short vignettes on the state of nanopore sequencing and application of Hi-C to metagenomic sequencing. 
Dr Fabian Buske (Garvan Institute of Medical Research), Title to be advised.
 
When: Thursday 9th October, 4.00pm – 5.00pm followed by drinks and nibbles. 
Where: Room 5.01, Level 5, Building 4, University of Technology, Sydney.
 
Event Date: 
Thursday, October 9, 2014 - 16:00 - 17:00

Dear All,

 

You are invited to the Sydney Next Generation Sequencing Special Interest Group Meeting,  which will be held at the University of Technology, Sydney.

 

Further details are below:

 

Speakers: 

Event Date: 
Wednesday, November 27, 2013 - 19:00 - 20:00
Institution: 
Deptartment of Civil and Environmental Engineering, MIT
Title: 

The Ocean....from the microscale

Abstract: 

At a time when microbial ecology is largely traveling along genomic roads, we cannot forget that the functions and services of microbes depend greatly on their behaviors, encounters, and interactions with their environment. New technologies, including microfluidics, high-speed video-microscopy and image analysis, provide a powerful opportunity to spy on the lives of microbes, directly observing their behaviors at the spatiotemporal resolution most relevant to their ecology. I will illustrate this 'natural history approach to microbial ecology' by focusing on marine bacteria, unveiling striking adaptations in their motility and chemotaxis and describing how these are connected to their incredibly dynamic, gradient-rich microenvironments. Specifically, I will present (i) direct evidence for a diverse gallery of microscale microbial hotspots in the ocean; (ii) a new framework for understanding the evolution of microbial diversity in the ocean; and (iii) microfluidic experiments to capture the dramatic chemotactic abilities of bacterial pathogens towards the roiling surface of coral hosts. Through these examples, I hope to show that direct visualization can foster a new layer of understanding in microbial ecology and can help us unlock the ocean's microscale.

Syndicate content