CDATA

Event Date: 
Wednesday, May 28, 2014 - 18:00 - 18:15
Institution: 
UNSW
Title: 

Regulation of Secondary Metabolites Production in Streptomyces coelicolor

Abstract: 

Streptomyces coelicolor produces a wide array of secondary metabolites that include antibiotics, actinorhodin (Act) and undecylprodigiosin (Red). When analysed for the growth of S. coelicolor on blood containing medium, we found that a functional haemolysin was critical for its growth. Gene knock-out and complementation analysis revealed the expression haemolysin was critical for growth, sporulation and antibiotics production. Total proteome comparison of wild-type and haemolysin deletion mutant indicated a wide range of carbon metabolizing enzymes to be down-regulated. Further analysis of selected targets that could encode phosphomannose isomerase and alpha-mannosidase revealed these sugar processing enzymes to play a critical role on growth, sporulation and antibiotics production in S. coelicolor.

Event Date: 
Wednesday, April 30, 2014 - 18:00 - 18:15
Institution: 
School of Biotechnology and Biomolecular Sciences UNSW
Title: 

The roles of extracellular DNA in bacterial biofilm formation

Abstract: 

Bacterial biofilm formation is dependent upon production of extracellular polymeric substances (EPS) mainly composed of polysaccharides, proteins, lipids and extracellular DNA (eDNA). eDNA promotes initial bacterial adhesion, aggregation, biofilm formation in a wide range of bacterial species. In Pseudomonas aeruginosa eDNA is a major component of biofilms and is essential for biofilm formation and stability. P. aeruginosa also produces phenazine an electrochemically active metabolite and phenazine production promotes eDNA release. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. Recent investigation showed pyocyanin (a kind of phenazine predominantly produced by P. aeruginosa) binds to eDNA mediated through intercalation of pyocyanin with eDNA. Pyocyanin binding to DNA has significant impacts on DNA properties and also on P. aeruginosa cell surface properties including its hydrophobicity, attractive surface energies physico-chemical interactions and bacterial aggregation.

Event Date: 
Wednesday, April 30, 2014 - 18:15 - 18:30
Institution: 
CSIRO
Title: 

Genetic diversity of Group I Clostridium botulinum and Clostridium sporogenes

Abstract: 

Whilst classified as a single bacterial species, Clostridium botulinum comprises a phylogenetically and physiologically diverse collection of organisms. Members of this species are linked together based solely on the production of botulinum neurotoxin (BoNT); amongst most lethal natural toxin produced. Isolates that do not produce BoNT are taxonomically considered a separate species, such as Clostridium sporogenes. Given the species delineation is based solely on an unstable phenetic trait presents increasing challenges in a post-genomic era, particularly with increasing evidence pointing towards the lateral acquisition of BoNT production in many strains. Here, the pan-genome of Group I C. botulinum and C. sporogenes is presented, describing the genetic diversity of these species, highlighting the incongruent taxonomy of these organisms and presenting insights into the acquisition of BoNT within this group.

A massive thank you to everyone who helped organise and attended the JAMS workshop (TOAST) and the annual symposium and dinner. By all accounts people had fun and even learnt a things or two.

 

Event Date: 
Wednesday, March 26, 2014 - 19:00 - 20:00
Institution: 
UTS, Australia
Title: 

Feeling Hot Hot Hot: Insights on thermal regulation of microbial carbon fixation and metabolism in a warming ocean

Abstract: 

Ocean warming is expected to affect marine microbial phototrophs directly by influencing their metabolism and capacity for photosynthesis as well as indirectly through altering the supply of resources needed for growth. In turn, changes in phototrophic community composition, biomass and size structure are expected to have cascading impacts on export production, food web dynamics and fisheries yields, as well as the biogeochemical cycling of carbon and other elements. As a result, temperature is a critical parameter in coupled climate-ocean models because it influences not only the magnitude, but also the direction of future ocean productivity.
 
This seminar presents data from several recent oceanographic voyages to suggest that the statistically significant relationships found between temperature and carbon fixation of contemporary ocean microbes is confounded by the availability of co-varying light and nutrient resources, and challenges the notion that satellite-derived sea surface temperature is a suitable proxy for tracking changes in upper ocean biogeochemical function. It will also present laboratory data which demonstrates that thermal selection of photosynthetic microbes (over >100 generations) results in phenotypic trait evolution and shifts in photosynthesis:respiration. Collectively, these data show non-linearity in metabolism of photosynthetic microbes in a warming ocean, pointing to increased variability of responses and potentially less predictability in models.

Event Date: 
Wednesday, January 29, 2014 - 18:15 - 18:30
Institution: 
Civ and Env Engineering UNSW
Title: 

Indirect electron transfer in microbial fuel cells: Role of electron shuttles

Abstract: 

The energy conversion can be realized using microbial fuel cells (MFCs) in which electrons extracted from organics are transferred to a solid electrode by electrogenic microorganisms. To make use of electrons donated by bacteria far away from the electrode, external electron transfer mediators were added to MFCs to enable the shuttles of electrons, causing a significant improvement of electron transfer efficiency and thus an increased power performance. Quinones and iron oxides are two types of electron shuttles that have been extensively studied in MFCs recently. Researchers have also employed different electrochemical approaches to explore the extracellular electron transfer mechanisms from cell to electrode mediated by these two electron shuttles. This presentation will mainly provide information about the different electron transfer mechanisms of quinones and iron oxides.

Reference: JOB391
Location: Sydney, NSW, Australia
Employer: Hawkesbury Institute for the Environment, University of Western
Application deadline: CLOSED
Event Date: 
Wednesday, January 29, 2014 - 18:00 - 18:15
Institution: 
UC Davis
Title: 

Hi-C Metagenomics: Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products

Abstract: 

Metagenomics is a valuable tool for the study of microbial communities but has been limited by the difficulty of “binning” the resulting sequences into groups corresponding to the individual species and strains that constitute the community. Moreover, there are presently no methods to track the flow of mobile DNA elements such as plasmids through communities or to determine which of these are co-localized within the same cell. We address these limitations by applying Hi-C, a technology originally designed for the study of three-dimensional genome structure in eukaryotes, to measure the cellular co-localization of DNA sequences. We leveraged Hi-C data generated from a synthetic metagenome sample to accurately cluster metagenome assembly contigs into a small number of groups that differentiated the genomes of each species. The Hi-C data also associated plasmids with the chromosomes of their host and with each other orders of magnitude more frequently than to other species. We further demonstrated that Hi-C data is highly informative for resolving strain-specific genes and nucleotide substitutions between two closely related E. coli strains, K12 DH10B and BL21 (DE3), indicating such data may be useful for high-resolution genotyping of microbial populations. Our work demonstrates that Hi-C sequencing data provide valuable information for metagenome analyses that are not currently obtainable by other methods. This application of Hi-C has the potential to provide new perspective in the study of thefine-scale population structure of microbes, how antibiotic resistance plasmids (or other genetic elements) mobilize in microbial communities, and the genetic architecture ofheterogeneous tumor clone populations.

Syndicate content