Chemistry

Event Date: 
Wednesday, September 30, 2015 - 19:00 - 19:45
Institution: 
University of Southern California
Title: 

Microbial evolutionary surprises in the future ocean:  Long-term adaptation of marine nitrogen-fixing cyanobacteria to high CO2

Abstract: 

The globally-distributed marine cyanobacterium Trichodesmium plays a key role in ocean biogeochemical cycles, as it is a major source of newly fixed atmospheric nitrogen to marine food webs.  Trichodesmium N2 fixation rates have been shown to increase under expected future high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity, but its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. My lab has been carrying out a nearly decade-long experimental evolution study with Trichodesmium growing under selection by projected future elevated CO2 levels.  Unexpectedly, selection under high CO2 results in large increases in nitrogen fixation and growth rates that appear to be irreversible, even after adapted cell lines are moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained even after returning to the ancestral environment. These constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, up-regulation of cellular energetic pathways, elevated expression of non-coding intergenic DNA, and increased activity of a potentially regulatory DNA methyltransferase enzyme. Ongoing work in my lab is examining the consequences of multiple nutrient limitation interactions (iron and phosphorus) for the physiology, biochemistry and genetics of Trichodesmium adapted to growing in a more nutrient-limited, acidified future ocean environment.  
 

Event Date: 
Wednesday, June 24, 2015 - 19:15 - 20:00
Institution: 
University of New South Wales
Title: 

The role of quorum sensing in chitin biodegradation

Abstract: 

The 1011 ton global annual turnover of chitin has generated extensive interest in the regulation of chitin processing enzyme production in bacteria. Some bacteria regulate chitinase production by N-Acyl-L-homoserine lactone (AHL) mediated quorum sensing. In this study, a description of bacterial community succession during chitin particle colonisation and depolymerisation in activated sludge is presented. It was discovered that Betaproteobacteria and Bacteroidetes lineages dominate chitin colonisation in sludge and that AHLs bind to chitin at concentrations that upregulate AHL dependent transcription in bacterial cells associated with the chitin surface. There was no requirement for high cell density (a quorum) at the chitin surface. Further, N-Acetyl glucosamine (GlcNAc), the monomer of the chitin polymer, is shown to inhibit AHL dependent gene transcription representing a previously unrecognised mechanism by which the chitinase reaction product negatively regulates chitinase production. Evidence is presented supporting a role for both competitive inhibition at the AHL binding site of LuxR type transcriptional regulators and catabolite repression. The quorum sensing inhibitor activity of GlcNAc adds to its list of possible therapeutic benefits. 

Event Date: 
Wednesday, June 24, 2015 - 18:00 - 18:45
Institution: 
University of Western Australia
Title: 

Microbial life in Movile Cave – an unusual cave ecosystem

Abstract: 

Movile Cave (Mangalia, Romania) is a unique cave ecosystem sustained by in situ chemoautotrophic primary production, analogous to deep-sea hydrothermal vents. The cave has been cut-off from the surface for the past 5.5 million years with the primary energy source coming mainly from hydrogen sulfide and methane released from the thermal fluids. Invertebrates, many of which are endemic to Movile Cave, are isotopically lighter in both carbon and nitrogen than surface organisms, indicating that chemoautotrophic primary production, primarily driven by methane and sulfur oxidizing microorganisms, occurs in the cave. In this talk, I will present our recent work on the microbiology of the Movile Cave ecosystem, with particular emphasis on functional diversity of Bacteria involved in aerobic one-carbon (methane and methylated amine) metabolism. Insights from metagenomic and genomic sequence analyses of the microbial community and isolates, respectively, will be discussed in detail.

Event Date: 
Wednesday, April 29, 2015 - 19:00 - 19:45
Institution: 
University of Southern California
Title: 

Bridging the gap between functional genes and biogeochemistry: a DMSP case study

Abstract: 

A large fraction of the surface ocean food web is active in producing and cycling both dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS).  In addition to the potential climatic significance of DMS production, the role that these compounds play in mediating ecosystem dynamics remains unknown.  An interdisciplinary dataset of biological, chemical and physical measurements was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling in oligotrophic regions. Our results suggest that UV-A radiation dose plays an important role in both phytoplankton DMS production and bacterial DMSP degradation. We suggest a modified ‘bacterial switch’ hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature, and UV-A dose. Finally, numerical models of varying complexity were used to link genetic and enzyme data to biogeochemical rates.

Event Date: 
Wednesday, March 25, 2015 - 18:15 - 18:30
Institution: 
University of Florida / UWS
Title: 

Candidatus Liberibacter asiaticus encodes a functional salicylic acid hydroxylase which degrades SA and contributes to the suppression of plant defence

Abstract: 

Salicylate (SA) is a plant hormone and plays important roles in plant defence. SA is synthesized in the chloroplast and transmitted in the phloem. SA hydroxylase is a flavoprotein monooxygenase with the enzyme activity of degradation of SA and is a proximal component of the naphthalene degradation pathway in many bacteria. Candidatus Liberibacter asiaticus, the causal agent of the most devastating citrus disease, is phloem limited and encodes a SA hydroxylase. In this study, we have shown that the SA hydroxylase is functional in degrading SA and its analogs. Ca. L. asiaticus infected plants have reduced PR gene (PR1, PR2, and PR5) expression and SA accumulation in Duncan grapefruit and Valencia sweet orange in response to subsequent inoculation with Xanthomonas citri subsp. citri (Xac) Aw, which is nonpathogenic on both citrus varieties. Ca. L. asiaticus also increased citrus susceptibility to subsequent infection by X. citri. The bacterial populations of XacA and XacAw in grapefruit were significantly higher in Ca. L. asiaticus infected plants compared to healthy control. Our data suggest that Ca. L. asiaticus encodes a functional salicylic acid hydroxylase which degrades SA and contributes to the suppression of plant defence. To counteract this virulence mechanism of Ca. L. asiaticus, foliar spray of SA analogs 2, 6-Dichloroisonicotinic acid (INA) and 2,1,3-Benzothiadiazole (BTH) and SA producing bacterial isolates was conducted to control HLB in large scale field trials. Both INA and BTH in combination with selected bacterial strains slowed down the increase of Ca. L. asiaticus titers in planta and HLB disease severity compared to negative control. SA hydroxylase seems to be an ideal target to develop small molecule inhibitors since no human homolog is present and it is not essential for bacterial growth, hence, the possibility of resistance development is minimized.      Salicylate (SA) is a plant hormone and plays important roles in plant defence. SA is synthesized in the chloroplast and transmitted in the phloem. SA hydroxylase is a flavoprotein monooxygenase with the enzyme activity of degradation of SA and is a proximal component of the naphthalene degradation pathway in many bacteria. Candidatus Liberibacter asiaticus, the causal agent of the most devastating citrus disease, is phloem limited and encodes a SA hydroxylase. In this study, we have shown that the SA hydroxylase is functional in degrading SA and its analogs. Ca. L. asiaticus infected plants have reduced PR gene (PR1, PR2, and PR5) expression and SA accumulation in Duncan grapefruit and Valencia sweet orange in response to subsequent inoculation with Xanthomonas citri subsp. citri (Xac) Aw, which is nonpathogenic on both citrus varieties. Ca. L. asiaticus also increased citrus susceptibility to subsequent infection by X. citri. The bacterial populations of XacA and XacAw in grapefruit were significantly higher in Ca. L. asiaticus infected plants compared to healthy control. Our data suggest that Ca. L. asiaticus encodes a functional salicylic acid hydroxylase which degrades SA and contributes to the suppression of plant defence. To counteract this virulence mechanism of Ca. L. asiaticus, foliar spray of SA analogs 2, 6-Dichloroisonicotinic acid (INA) and 2,1,3-Benzothiadiazole (BTH) and SA producing bacterial isolates was conducted to control HLB in large scale field trials. Both INA and BTH in combination with selected bacterial strains slowed down the increase of Ca. L. asiaticus titers in planta and HLB disease severity compared to negative control. SA hydroxylase seems to be an ideal target to develop small molecule inhibitors since no human homolog is present and it is not essential for bacterial growth, hence, the possibility of resistance development is minimized.      

Event Date: 
Wednesday, February 25, 2015 - 15:30 - 16:00
Institution: 
University of California Davis
Title: 

Stress, function and community dynamics in wastewater bioreactors

Abstract: 

Biological wastewater treatment plants receive a complex mixture of chemicals and are operated based on principles of general microbial growth kinetics. Regulated effluent criteria determine the extent of treatment required to achieve removal of chemical oxygen demand and nutrients like reduced nitrogen and phophate. Plants are, however, not designed to metabolize specific (micro)pollutants, and the factors influencing the emergence of microbial communities that are tolerant of or have evolved to metabolize and remove toxic compounds are poorly understood. Basic questions in wastewater engineering include ‘What affects the dynamics of wastewater microbial communities?’  and ‘Are communities ever stable and if so does this matter for basic processes like removal of organics and nutrients?’.  
We investigated the impact of defined and sustained chemical stress on wastewater microbial communities and their functions, using the highly toxic and recalcitrant compound 3-chloroaniline (3-CA) as model stressor. Experimental design included replicate bioreactors, sterile synthetic feed, ambient levels of 3-CA, and fixed factors like bioaugmentation and temperature. Process outcomes varied from no removal of 3-CA to complete removal within three weeks. Community changes were dramatic and nitrification was a key function affected by the stressor. Finally, microbial diversity indices based on 16S rRNA gene amplicon sequencing or T-RFLP, combined with influent nutrient concentrations, were used to predict effluent concentrations using support vector regression, a machine learning model. Sensitivity analysis of a preliminary dataset for a full-scale water reclamation plant would suggest that evenness is the most significant input variable for the prediction of soluble COD, nitrate and ammonium concentrations in the effluent. Overall, we show that both detailed analysis of taxonomy and gene expression and general indices of diversity are useful for understanding the link between stable process performance and microbial communities.

Event Date: 
Wednesday, February 25, 2015 - 15:00 - 15:30
Institution: 
University of East Anglia
Title: 

Bacterial metabolism of isoprene

Abstract: 

Isoprene (methyl isobutene), is a climate-active volatile organic compound that is released into the atmosphere in similar quantities to that of methane, making it one of the most abundant trace volatiles. Large amounts of isoprene are produced by trees but also substantial amounts are released by microorganisms. The consequences on climate are complex. Isoprene can indirectly act as a global warming gas but in the marine environment it is also thought to promote aerosol formation, thus promoting cooling through increased cloud formation. We have been studying bacteria that grow on isoprene. These aerobic bacteria appear to be widespread in the terrestrial and marine environment. Rhodococcus AD45, our model organism, oxidizes isoprene using a soluble diiron centre monooxygenase which is similar to soluble methane monooxygenase. The physiology, biochemistry and molecular biology of Rhodococcus AD45 will be described, together with genome analysis, transcriptome analysis and regulatory mechanisms of isoprene degradation by bacteria. The ecology of isoprene degraders in both the terrestrial and marine environment will be described, together with DNA-Stable Isotope Probing experiments which have enabled us to identify active isoprene degraders in the environment.

You are invited to the Sydney Next Generation Sequencing Special Interest Group Meeting,  which will be held at the University of Technology, Sydney.
 
Speakers: 
A/Prof Aaron Darling (ithree Institute, UTS), MinIONs & Hi-C: short vignettes on the state of nanopore sequencing and application of Hi-C to metagenomic sequencing. 
Dr Fabian Buske (Garvan Institute of Medical Research), Title to be advised.
 
When: Thursday 9th October, 4.00pm – 5.00pm followed by drinks and nibbles. 
Where: Room 5.01, Level 5, Building 4, University of Technology, Sydney.
 
Syndicate content