University of New South Wales

Event Date: 
Wednesday, October 28, 2015 - 18:00 - 18:15
Institution: 
UNSW
Title: 

Key to living in the extreme desert soils of eastern Antarctica: a chemolithotrophic lifestyle

Abstract: 

Mitchell Peninsula is located at the south of the Windmill Islands, Eastern Antarctica. It is described as a nutrient poor, extreme polar desert and limited knowledge on the microbial diversity of  the soils in this area exists. We examined the microbial taxonomic composition and metabolic potential of Mitchell Peninsula soils  using 16S metagenomics and shotgun metagenomics. We found the site to be a potential biodiversity hotspot, containing a high abundance of Candidate Phyla WPS2 and AD3. Subsequently, differential binning was used to recover 23 draft genomes, including 3 genomes from WPS-2 and two from AD3.  Further analysis of the metagenome revealed a novel Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene to be abundant in the bacterial community, despite a lack of evidence for photosynthesis related genes. We believe that unlike many other Antarctic regions, chemolithautrophic carbon fixation via CBB cycle is the dominant carbon fixation pathway, hence this pathway is providing the key to survival is this very dry, hostile environment. 

Event Date: 
Wednesday, April 29, 2015 - 18:00 - 18:15
Institution: 
University of New South Wales (UNSW)
Title: 

Bacterial secondary metabolite prodigiosin inhibit biofilm development by cleaving extracellular DNA

Abstract: 

Prodigiosin a bacterial secondary metabolite is a heterocyclic compound belongs to the class of tripyrrole, synthesized by various strains of bacteria includes Serratia species. Research on prodigiosin is under limelight for past 10 years from clinical and pharmacological aspects in relevance to its potential to be drug for cancer therapy by inducing apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to DNA in presence of copper ion and consequently lead to inhibition of cell-cycle progression and inducing cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. We performed experiments to reveal any link between prodigiosin and biofilm inhibition through degradation of extracellular DNA which plays a major role in biofilm establishment. Our study showed that prodigiosin (extracted from Serratia culture) has strong DNA cleaving property but does not intercalate with nitrogenous bases of DNA. Using P. aeruginosa PA14 wild-type strain as a model organism we showed that bacterial cells treated with prodigiosin showed significant reduction in its cells surface hydrophobicity and consequently affecting surface energies and physico-chemical property essential for bacterial adhesion and aggregation. We also found that prodigiosin did not influence planktonic growth of P. aeruginosa however, was successful in inhibiting the establishment of biofilms includes decrease in biofilm thickness, adhesion to substratum, decrease in biovolume, microcolony formation and also significantly dispersed pre-established biofilm of P. aeruginosa. This novel function on the biofilm inhibition of prodigiosin could be used to interfere with risks associated with bacterial biofilms. 

Event Date: 
Wednesday, November 26, 2014 - 19:00 - 19:45
Institution: 
UNSW
Title: 

“The microbial friends and foes of seaweeds”

Abstract: 

 

Seaweeds (macroalgae) form a diverse and ubiquitous group of photosynthetic organisms that play an essential role in many aquatic ecosystems, yet till recently very little was understood with respect to their associated microbiota. We now know that macroalgae are home to a diverse community of microorganisms, that display both temporal and spatial variation yet remain distinct from the surrounding seawater. Symbiotic interactions between marine microorganisms and macroalgae can have both positive (e.g. providing nutrients and morphogenic cues or protection from biofouling) and negative (e.g. disease) outcomes for the host. This talk will give an overview of the microorganisms typically associated with macroalgae with a focus on the bacterial symbionts. Details of how bacteria successfully colonize macroalgal hosts will be discussed with specific examples of the functional role of microbial epiphytes in macroalgal health (including disease) highlighted from a “holobiont” perspective.

 

Thanks to the JAMS faithful for coming out to the Australian Museum last night. The ranks were slightly depleted given the large contingents that are at the ISME conference in Korea this week. No matter, more pizza for all. In the short presentations Robert Moran gave a great account of his work on plasmid and resistance determinants in E. coli lineages in the human gut and Igy Pang from UNSW presented his work on gene co-expression networks underlying synergistic antifungal treatments. In the long presentation by Michael Gillings from Macquarie University results were presented that send an ominous warning of how global antibiotic use is affecting evolution. Michael gave a rivetting account of how microbiology is fused with the Anthropocene. FInally a massive congratulations to JAMS co-founder Professer Ian Paulson from Macquarie University for being awarded an Australian Laureate Fellowship. Our very own home grown legend.

Event Date: 
Wednesday, August 27, 2014 - 18:15 - 18:30
Institution: 
UNSW
Title: 

Analysis of gene co-expression networks reveals mechanisms underlying synergistic antifungal treatment in S. cerevisiae

Abstract: 

 
Background: Fungal pathogens are difficult to treat. There are few effective antifungal drugs available, and resistance is emerging. Iron chelators are promising synergents due to the importance of iron availability during host infection, but the mechanistic role of antifungal-chelator combinations is poorly understood. The project analyses cellular pathways that are differentially expressed during the synergistic response to elucidate the mechanisms and targets of drug-chelator treatment.
Method: To measure the effect of synergistic treatment on the S. cerevisiae transcriptome, cells were treated with i) amphotericin B only; ii) a combination of amphotericin B + lactoferrin, an iron chelator; and iii & iv) corresponding matching controls. RNA-seq data were generated using Illumina HiSeq 2000 with biological triplicates multiplexed and randomized across two sequencing lanes. Differential expression analyses were performed using EdgeR, and the results were co-visualized with biological networks using Cytoscape.
Results: Amphotericin B alone resulted in the down-regulation of nine genes involved in ergosterol biosynthesis and the up-regulation of AFT1, a transcription factor involved in iron transport. Amphotericin B + lactoferrin co-treatment halted AFT1 up-regulation and down-regulated genes involved in iron transport. These genes were co-expressed with YAP5, a second transcription factor that co-ordinates the expression of genes that control the nuclear localization of AFT1 and also governs the expression of oxidative stress response genes.

Event Date: 
Wednesday, April 30, 2014 - 18:00 - 18:15
Institution: 
School of Biotechnology and Biomolecular Sciences UNSW
Title: 

The roles of extracellular DNA in bacterial biofilm formation

Abstract: 

Bacterial biofilm formation is dependent upon production of extracellular polymeric substances (EPS) mainly composed of polysaccharides, proteins, lipids and extracellular DNA (eDNA). eDNA promotes initial bacterial adhesion, aggregation, biofilm formation in a wide range of bacterial species. In Pseudomonas aeruginosa eDNA is a major component of biofilms and is essential for biofilm formation and stability. P. aeruginosa also produces phenazine an electrochemically active metabolite and phenazine production promotes eDNA release. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. Recent investigation showed pyocyanin (a kind of phenazine predominantly produced by P. aeruginosa) binds to eDNA mediated through intercalation of pyocyanin with eDNA. Pyocyanin binding to DNA has significant impacts on DNA properties and also on P. aeruginosa cell surface properties including its hydrophobicity, attractive surface energies physico-chemical interactions and bacterial aggregation.

Event Date: 
Wednesday, January 29, 2014 - 18:15 - 18:30
Institution: 
Civ and Env Engineering UNSW
Title: 

Indirect electron transfer in microbial fuel cells: Role of electron shuttles

Abstract: 

The energy conversion can be realized using microbial fuel cells (MFCs) in which electrons extracted from organics are transferred to a solid electrode by electrogenic microorganisms. To make use of electrons donated by bacteria far away from the electrode, external electron transfer mediators were added to MFCs to enable the shuttles of electrons, causing a significant improvement of electron transfer efficiency and thus an increased power performance. Quinones and iron oxides are two types of electron shuttles that have been extensively studied in MFCs recently. Researchers have also employed different electrochemical approaches to explore the extracellular electron transfer mechanisms from cell to electrode mediated by these two electron shuttles. This presentation will mainly provide information about the different electron transfer mechanisms of quinones and iron oxides.

Reference: JOB321
Location: Sydney, NSW, Australia
Employer: Professor David Waite
Application deadline: CLOSED
Syndicate content