Archaea

Event Date: 
Wednesday, September 30, 2015 - 18:00 - 18:15
Institution: 
Macquarie University
Title: 

Aquifer microbial community assembly: do neutral processes dominate?

Abstract: 

Community assembly processes can be condensed into four categories: dispersal, selection, drift and speciation. We tested aquifer communities (of Archaea, Bacteria, Fungi, and Eukarya generally) for evidence that dispersal limitation and environmental selection play a role in determining community biodiversity and composition. We found only weak evidence for these processes at a regional scale of up to 250 km and spanning several significant dispersal barriers. I discuss the possibility that neutral (i.e. non-deterministic, non-selective) processes dominate in groundwater ecosystems, and the spatial scaling of these processes.

 

Event Date: 
Wednesday, August 26, 2015 - 18:15 - 18:30
Institution: 
CSIRO
Title: 

Effects of temporal pH shifts on ammonia oxidiser community structure and function

Abstract: 

Soil nitrification, the oxidation of ammonia to nitrate, is and driven by bacterial and archaeal autotrophic ammonia oxidisers (AOB and AOA) that carry out the first, rate limiting, step of oxidising ammonia to nitrite.  Previous work has suggested that adaptation and selection in AOA and AOB communities is, to some extent, pH driven.  Acidophilic, acido-neutral, and alkalinophilic groups have been identified by environmental surveys of amoA genes.  These studies of the role of pH in determining ammonia oxidiser community structure and activity have largely relied on spatial pH gradients.  In many managed soil systems (e.g., agricultural systems) edaphic factors (e.g., pH, N concentrations) vary widely temporally and the implications of short term temporal shifts in factors thought to govern oxidiser community structure, and therefore our ability to manipulate edaphic factors to direct community structure, are not well understood.   We investigated the roles of pH in driving nitrifier activity (potential) and community structure over a crop growing season (6 sampling points) in agricultural soils by comparing unamended soils with soils amended with lime to create a temporal pH gradient.  Liming induced a rapid and sustained change in the pH of surface soils (0-10cm), with pH in these soils increasing from 4.8 to 6.5, while in subsurface soils pH increased to a lesser degree after liming (4.3 – 4.5).  After liming, potential nitrification rates increased significantly throughout the production season in both surface and subsurface soils.   TRFLP analysis of total bacterial and archaeal communities showed significant partitioning of the broader communities with soil depth, pH treatment and time, suggesting that microbial communities respond rapidly to changes and that temporal variation in community structure is an important, if often overlooked, factor in assessing microbial diversity patterns. These changes were greater for bacterial, than archaeal, communities. We then utilised amoA gene microarrays to investigate specific AOA and AOB community responses to temporally induced pH changes.  Despite significant changes to ammonia oxidiser function, we saw only very weak changes in community structure of AOA and AOB, suggesting that over shorter temporal periods soil communities are resilient to environmental change and that niche partitioning of ammonia oxidiser communities is likely to be spatially, rather than temporally, governed.

Event Date: 
Wednesday, July 29, 2015 - 18:00 - 18:15
Institution: 
University of New South Wales
Title: 

Host-virus Interactions in a Frigid, Hypersaline Antarctic Lake Revealed by Metaproteomics

Abstract: 

Deep Lake is a marine derived, hypersaline system in Antarctica that remains perennially ice-free with water temperatures dropping to -20°C. These harsh environmental conditions have led to a low complexity microbial community, completely dominated by members of the haloarchaea, including four isolated species (tADL, DL31, Hrr. lacusprofundi and DL1) that account for ~72% of the lakes cellular population. Genomic sequencing and analysis of the four isolated species combined with metagenomics have revealed an unprecedented level of inter-genera exchange of long (up to 35 kb) stretches of identical DNA. However, despite the rampant, promiscuous exchange of DNA, distinct haloarchaeal lineages appear to prevail in the lake by virtue of their unique capacities for niche adaptation (1, 2). With no apparent metazoan grazers present in the lake, viruses are hypothesised to play a dominant role in shaping the microbial community of Deep Lake. In this present study we applied metaproteomics for the first time on a hypersaline environment and combined it with in-depth genomic and metagenomic analysis of Deep Lake CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) and BREX (Bacteriophage Exclusion) (3) systems to elucidate host-virus interactions.
Shotgun metaproteomics was performed on Deep Lake biomass from 5 distinct depths, captured by sequential filtration through 3 µm, 0.8 µm and 0.1 µm filters during the Antarctic summer of 2008/2009. All identified proteins were manually annotated and grouped into taxonomic and functional categories. We characterized CRISPR systems of the four genomes and the Deep Lake metagenome and used CRISPR spacer and repeat sequences to identify sources of invading DNA.
The Deep Lake metaproteome comprised around 1100 detected proteins. A striking feature was the identification of multiple, highly abundant cell surface proteins with a high degree of sequence variation compared to the genomes of the isolate species (“variants”). E.g. we identified 6 distinct proteins all matching the main S-layer component of tADL. Furthermore we detected variants for archaella (archaeal flagella), pili and other cell surface proteins. Multiple viral proteins were detected with sequence similarity to other, mainly haloarchaeal viruses. Functional CRISPR loci could be identified in the genomes of all four isolated species and CRISPR-associated (Cas) proteins were detected for two of them. CRISPR spacers could be linked to different sources of invading DNA, with most, but not all spacers targeting viruses. We detected one BREX protein (PglX) for Hrr. lacusprofundi. Some detected proteins, including cell surface proteins, were encoded on metagenome contigs together with putative viral genes.
The detection of multiple protein variants for cell surface structures like S-layer and archaella is indicative of phylotypes that are present in the lake. Introducing variation in cell surface structures likely provides the haloarchaeal populations with a way of evading viral infection. Consistent with this is the presence of a diverse viral population in Deep Lake. We detected proteins from at least eight distinct haloarchaeal viruses (eight major capsid proteins), with some proteins confirming active viral life cycles (e.g. prohead protease). Furthermore, the CRISPR spacer analysis revealed that some viruses infect multiple species (broad host range). In addition to the acquired cell surface variation, haloarchaeal host cells have employed active CRISPR and BREX systems as defense against viral infection.                             The presence of cell surface genes on metagenomic contigs together with putative viral genes, and the high degree of sequence variation observed in many cell surface proteins, suggests that viruses are involved in the acquisition, mutation and distribution of cell surface variants within the haloarchaeal populations. Overall, we were able to identify and describe a complex network of virus-host interactions, revealing a pivotal role of viruses in shaping the microbial community in Deep Lake (4). 
 

Event Date: 
Wednesday, January 28, 2015 - 18:00 - 18:15
Institution: 
University of New South Wales
Title: 

Biomining and methanogenesis for resource extraction from asteroids

Abstract: 

As spacecraft fuel is a limited resource, creating a readily available source for hydrocarbon-based fuels in space will reduce launch cost and increase operating time of spacecraft. Biomethanation is viable for Earth-based operations, thus applications in space under controlled conditions have potential. This study proposes a sustainable environment for methanogens on Near-Earth Objects. Vacuum and desiccation effects, at 0.025% Earth atmospheric pressure, are conducted on three bacterial and three Archaea strains to test post-exposure viability. Cell degradation and colony size reduction was quantified for aerobic strains. Adverse effects were exhibited more so in gram-negative than gram-positive strains. Archaea showed limited to no cell degradation, providing evidence that vacuum effects, at these pressures, will have minor effects on in-situ biofuel operations. If successful, a sustainable and cost-effective method of metal extraction and producing methane based fuel reservoirs could revolutionise in-situ resource and fuel resupply of spacecraft, thus enhancing spacefaring capabilities.

Event Date: 
Wednesday, October 29, 2014 - 18:00 - 18:15
Institution: 
UNSW
Title: 

Ammonia-oxidizing bacteria play redundant roles with ammonia-oxidizing archeae in acidic soil

Abstract: 

 
It is widely accepted that ammonia-oxidizing achaea (AOA) dominates ammonia oxidization, the rate-limiting step in the nitrification process, in acidic soils, but their counterpart ammonia-oxidizing bacteria (AOB) which are ubiquitous in acidic soils should not be neglected. Researches about the functions of AOB in acidic soils are very few. Here, we investigated the abundance and community of AOA and AOB in acidic soils (pH 3.35 ~ 4.46) with nine different treatments (Ctrol, N, NK, NP, NPK, N+CaO, NK+CaO, NP+CaO, NPK+CaO) and found that significant positive correlations between potential nitrification rate (PNR) with the total amoA gene copy numbers of AOA and AOB. The community of AOB but not of AOA responded to CaO significantly. Moreover, microcosms incubation with different concentration CaO (N+0, 500, 1000, 2000 ppm CaO, pH 3.42 ~ 4.37) showed that the abundance of AOB amoA gene significantly increased in N+1000 and N+2000 treatments at day 7 while the abundance of AOA amoA gene significantly increased in N and N+500 treatments at day 60. The community of AOA and AOB changed significantly during the incubation. Phylogenetic analysis of bacterial and archaeal amoA gene in treatment N+1000 revealed that AOA belonged to group 1.1a-associated increased whereas that belonged to group 1.1b decreased significantly during the incubation.  AOB belonged to Cluster 10 increased significantly at day 7 but decreased during the last incubation while AOB belonged to Cluster 3a.1 and 3a.2 showed reverse trends during the incubation. Additionally, AOB belonged to Cluster 7 were obligately observed at day 7. Moreover, we studied the activity of ammonia oxidizers in treatments N, N+1000 and N+CaO with 13CO2-DNA-stable isotope probing incubation for 30 days. Interestingly, 13C-labeled carbon source was significantly assimilated into the amoA gene of AOB but not AOA at day 7 and the reverse result was observed at day 30 in treatment N+1000 though it was acidic soil. Significant assimilation of 13C-labeled carbon source was detected in AOA amoA gene in treatments N and N+CaO during the incubation. Taken together, these results suggested that AOB responded to the disturbance significantly then drove the ammonia oxidization in acidic soils, meaning that AOB played redundant roles with AOA in acidic soils though the two groups of ammonia oxidizers had special niches.

Event Date: 
Wednesday, November 27, 2013 - 18:15 - 18:30
Institution: 
School of Civil and Environmental Engineering, UNSW
Title: 

Metal(loid) bioaccessibility dictates microbial community composition in acid sulfate soil horizons and sulfidic drain sediments

Abstract: 

 
Microbial community compositions were determined for three soil horizons and drain sediments within an anthropogenically-disturbed coastal acid sulfate landscape using 16S rRNA gene tagged 454 pyrosequencing.  Diversity analyses were problematic due to the high microbiological heterogeneity between each geochemical replicate.  Taxonomic analyses combined with measurements of metal(loid) bioaccessibility identified significant correlations to genera (5 % phylogenetic distance) abundances. A number of correlations between genera abundance and bioaccessible Al, Cr, Co, Cu, Mn, Ni, Zn, and As concentrations were observed, indicating that metal(loid) tolerance influences microbial community compositions in these types of landscapes.  Of note, Mn was highly bioaccessible (≤ 24 % total soil Mn); and Mn bioaccessibility positively correlated to Acidobacterium abundance, but negatively correlated to Holophaga abundance and two unidentified archaeal genera belonging to Crenarchaeota were also correlated to bioaccessible Mn concentrations, suggesting these genera can exploit Mn redox chemistry. 

Event Date: 
Wednesday, February 27, 2013 - 16:15 - 16:45
Institution: 
California Institute of Technology
Title: 

Bridging the gap between ‘omics generated hypotheses and metabolic function of microorganisms in the environment.

Abstract: 

Rapid advancements in environmental ‘omics approaches (e.g. metagenomics, transcriptomics, proteomics) have provided a fresh perspective on the metabolic potential of uncultured microorganisms in nature.  However, our ability to directly test hypotheses regarding the ecophysiology of microorganisms in their natural environment remains a challenge.  New applications of whole cell fluorescence microscopy, stable isotope tracers and nanoscale secondary ion mass spectrometry (FISH-nanoSIMS), provide direct cell-specific isotopic, elemental and phylogenetic information on the metabolic roles of environmental microorganisms and microbial associations.   This presentation will introduce the FISH-nanoSIMS method and highlight its utility for the field of microbial ecology through a case study of uncultured methane-consuming archaeal-bacterial symbioses in deep-sea sediments.

Event Date: 
Wednesday, January 30, 2013 - 19:00 - 19:30
Institution: 
University of NSW
Title: 

Who’s doing what? A metaproteomic survey of Southern Ocean microbes near Antarctica.

Abstract: 

The ocean around Antarctica is not just cold, it’s also dark for a large part of the winter.  This means that carbon fixation by photosynthesis is inhibited during the polar winter.  We used metaproteomics to reconstruct the ecology of microbes at the surface of the Southern Ocean near the Antarctic Peninsula, for both winter and summer seawater samples.  Metagenomics (community genomics) tells us what kinds of genes are present.  Metaproteomics goes a step further and determines which proteins (including enzymes) are actively being produced by microbes within a community.  Therefore, we can use this approach to reconstruct microbial processes used for carbon fixation, nutrient acquisition, and other metabolic pathways.  We found that ammonia-oxidising archaea were dominant at the Southern Ocean in winter, with the detected proteins indicating that they had a major role in ‘dark’ (light-independent) carbon fixation at the surface.  In summer, by contrast, these autotrophic archaea were undetectable at the ocean surface, when photosynthesis by algae was the major route of carbon fixation.  SAR11 bacteria (Pelagibacter spp.) were prevalent in both winter and summer, and detected proteins indicate that ATP-dependent uptake was important for the acquisition of nutrients by these heterotrophs, including simple organic compounds such as amino acids and taurine.  Flavobacteria (especially Polaribacter) were more prevalent in summer, and the detected proteins show that these heterotrophic bacteria use exoenzymes to target complex biomolecules (polypeptides, polysaccharides) released from decaying algae.  Overall, metaproteomics of the Southern Ocean surface has allowed us to identify the similarities and differences between winter and summer microbial communities, as well as which particular nutrients are being targeted by individual groups of bacteria and archaea.

Syndicate content