Phytoplankton

Event Date: 
Wednesday, September 30, 2015 - 18:15 - 18:30
Institution: 
UTS
Title: 

Divergence in temperature stress management between coastal and East Australian current (EAC) phytoplankton populations.

Abstract: 

In June 2015, 27 scientists took part in a 3 week ocean voyage aboard the brand new Australian research vessel, the RV Investigator. The main objective of the expedition was to study sub-mesoscale processes - billows and eddies - along the productive shelf influenced by the East Australian Current. Dr Olivier Laczka is presenting the results obtained for one of the multiple projects conducted during this voyage. Microbial communities from the EAC and a coastal site (north of Smokey Cape) were incubated along a temperature gradient (spanning 32 to 15.5 °C) to examine their capacity to deal with departures from in situ temperature (~22 °C). Intracellular stress within picoeukaryote populations was examined using a fluorescent stain targeting Reactive Oxygen Species (ROS). Stained samples were examined with a flow cytometer (excitation wavelength 488 nm). The goal of this study was to assess whether EAC microbial communities are more thermally tolerant than coastal microbial communities and determine whether general oxidative stress patterns could be used as a signature of water mass origins.

Event Date: 
Tuesday, July 24, 2012 - 19:00 - 20:00
Institution: 
MIT
Title: 

Relating the biogeography of nitrogen fixing phytoplankton and the nutrient environment in the ocean

Abstract: 

 

Nitrogen fixation may support as much as half of local productivity in some subtropical regions and is the major source of fixed nitrogen to the ocean, maintaining global productivity on long timescales. We use a combination of numerical models and ecological theory to interpret the relationship of nitrogen fixation and nutrient resources (fixed nitrogen, phosphorus and iron) in the global open ocean. We find that the ratio of the supply rates of iron and fixed nitrogen can accurately predict the biogeography of nitrogen fixers to the extent that it can be constrained by current observations.

Event Date: 
Wednesday, October 26, 2011 - 18:00 - 18:15
Institution: 
Macquarie University
Title: 

Marine Synechococcus: genomics, genetics and ecology of a ubiquitous primary producer

Abstract: 

Although life in the oceans presents some of the most amazing and colourful spectacles, from whales to tropical reefs, the molecular age has led us to a deeper understanding of the diversity and activity of the microorganisms that have a profound influence on our climate. Up until the late 1970s the smallest and most abundant phytoplankton in the oceans had remained undiscovered. These organisms have since been characterised as Synechococcus and Prochlorococcus which are responsible for 2/3 of all marine CO2 fixation. For more than a decade we have been exploring the molecular ecology, physiology, and genomes of these prokaryotic primary producers. Molecular approaches have led to an understanding that genome diversity and plasticity underpin their global distribution and lead us to a pathway from genes, the fundamental units of selection, to a better understanding of the activity of microorganisms that drive geochemical cycles.

Syndicate content