Metagenomics

Event Date: 
Wednesday, October 28, 2015 - 18:00 - 18:15
Institution: 
UNSW
Title: 

Key to living in the extreme desert soils of eastern Antarctica: a chemolithotrophic lifestyle

Abstract: 

Mitchell Peninsula is located at the south of the Windmill Islands, Eastern Antarctica. It is described as a nutrient poor, extreme polar desert and limited knowledge on the microbial diversity of  the soils in this area exists. We examined the microbial taxonomic composition and metabolic potential of Mitchell Peninsula soils  using 16S metagenomics and shotgun metagenomics. We found the site to be a potential biodiversity hotspot, containing a high abundance of Candidate Phyla WPS2 and AD3. Subsequently, differential binning was used to recover 23 draft genomes, including 3 genomes from WPS-2 and two from AD3.  Further analysis of the metagenome revealed a novel Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene to be abundant in the bacterial community, despite a lack of evidence for photosynthesis related genes. We believe that unlike many other Antarctic regions, chemolithautrophic carbon fixation via CBB cycle is the dominant carbon fixation pathway, hence this pathway is providing the key to survival is this very dry, hostile environment. 



The Centre for Systems Genomics is holding a 1-day symposium on metagenomics and microbiome research, Tuesday November 17 at Bio21. 

Interested in presenting? Register now! and complete the abstract section.

This free event will feature talks on a range of microbiome-related topics including new computational and lab methods, covering a range of application areas including the human microbiome in health and disease, environmental metagenomics, ecology, agriculture and ancient DNA.

Event Date: 
Wednesday, June 25, 2014 - 18:15 - 18:30
Institution: 
CSIRO
Title: 

Biomes of Australian Soil Environments (BASE)

Abstract: 

The Biomes of Australian Soil Environments (BASE) is a soil microbial diversity database faciliatated by Bioplatforms Australia and currently involving 14 Australian agencies. The BASE project is collecting biodiversity data from Australian soils in the form of amplicon sequences and amplication free metagenomic sequences. Sequence data is accompanied by rich contextual data describing soil physical and chemical attributes, land use, overlying vegetation and climate. All information collected is made publicly available via the BASE database. Thus far BASE has collected approximately 900 samples, with data from over 400 of these being currently available. I will briefly introduce the BASE project and its newly deployed database by describing the sampling and sequencing protocols and demonstrating the databases search capabilities.

Event Date: 
Wednesday, January 29, 2014 - 18:00 - 18:15
Institution: 
UC Davis
Title: 

Hi-C Metagenomics: Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products

Abstract: 

Metagenomics is a valuable tool for the study of microbial communities but has been limited by the difficulty of “binning” the resulting sequences into groups corresponding to the individual species and strains that constitute the community. Moreover, there are presently no methods to track the flow of mobile DNA elements such as plasmids through communities or to determine which of these are co-localized within the same cell. We address these limitations by applying Hi-C, a technology originally designed for the study of three-dimensional genome structure in eukaryotes, to measure the cellular co-localization of DNA sequences. We leveraged Hi-C data generated from a synthetic metagenome sample to accurately cluster metagenome assembly contigs into a small number of groups that differentiated the genomes of each species. The Hi-C data also associated plasmids with the chromosomes of their host and with each other orders of magnitude more frequently than to other species. We further demonstrated that Hi-C data is highly informative for resolving strain-specific genes and nucleotide substitutions between two closely related E. coli strains, K12 DH10B and BL21 (DE3), indicating such data may be useful for high-resolution genotyping of microbial populations. Our work demonstrates that Hi-C sequencing data provide valuable information for metagenome analyses that are not currently obtainable by other methods. This application of Hi-C has the potential to provide new perspective in the study of thefine-scale population structure of microbes, how antibiotic resistance plasmids (or other genetic elements) mobilize in microbial communities, and the genetic architecture ofheterogeneous tumor clone populations.

Event Date: 
Wednesday, February 26, 2014 - 15:15 - 15:45
Institution: 
Singapore Centre on Environmental Life Sciences Engineering
Title: 

Dissecting Structure-Function Relationships In Complex Microbial Communities Using Perturbation Transcriptomics

Abstract: 

Application of ‘omics technologies, including high-throughput nucleic acid sequencing and advanced mass spectrometry, show huge potential to increase our understanding of bioprocesses occurring in both natural and engineering microbial ecosystems. Field studies of such systems are inherently complicated, while laboratory reactor models involve extensive community modifications following inoculation and may not accurately reflect the biology of the source community. Here we develop a complementary approach to dissecting structure-function relationships of complex microbial communities, by applying experimental perturbations to freshly sourced, intact communities in a controlled fashion. In an investigation examining nitrogen transformation in wastewater treatment, we use metatranscriptomics in a time series design (n=20 samples) to study changes associated with onset of oxygenation. This stimulus switches the community between de-nitrification and nitrification phases of the nitrogen cycle, thus modeling a key aspect of wastewater process control. This model permits identification of functional genes, in both known and previously unknown taxa, and represents a readily adaptable model studying structure-function relationships in microbial communities. If time permits, I will discuss how this perturbation metatranscriptomics approach has implications for improving our ability to perform metagenome assembly.

Event Date: 
Monday, February 24, 2014 - 09:30 - Tuesday, February 25, 2014 - 17:00

 

Registration Closed

24-25 February 2014
The Australian Museum

Microbiology is undergoing a revolution bought about by advances in next-generation DNA sequencing technology.  Researchers are now required to understand an array of bioinformatics principles and tools to interpret the vast amounts of data being generated. Presented by leading Australian researchers, TOAST is a 2-day event aimed at postgraduate students and early career postdocs providing in-depth tutorials encompassing concepts and software available to molecular microbiologists and microbial ecologists including:

Event Date: 
Wednesday, April 24, 2013 - 19:15 - 20:00
Institution: 
University of Technology Sydney
Title: 

Observing the developing infant gut microbiome with time-series metagenomics.

Abstract: 

The human body plays host to a complex microbial ecosystem, the
development of which begins around the time of birth. Routine monitoring
of the development of microbial ecosystems in newborns (or other
environments) using metagenomic methods is currently extremely
challenging and expensive. I will describe some recent technological
advances that could enable routine sequencing and computational analysis
of hundreds of metagenomes, and demonstrate their application on samples
taken from a developing infant gut microbiome. In this study forty-five
samples were subjected to transposon-catalyzed Illumina library prep and
metagenomic sequencing on a HiSeq 2000 instrument. The resulting data
was subjected to analysis of microbial community structure using a new
approach called phylogenetic Edge Principal Component Analysis (Edge
PCA) that can identify which lineages in a phylogeny explain the
greatest degree of variation among the samples. We also investigate the
population genomics of Bacteroides thetaiotaomicron, one of the dominant
members of the gut microbial community.

Event Date: 
Wednesday, March 27, 2013 - 18:15 - 18:30
Institution: 
Hawkesbury Institute for the Environment, University of Western Sydney
Title: 

Effect of Huanglongbing on the structure and functional diversity of microbial communities associated with citrus.

Abstract: 

Plant-microbe interactions lie at the heart of plant performance and ecology. It has been postulated that disruption of multi-trophic interactions in a stable ecosystem under the influence of invading phytopathogens will cause community reorganization and changes in the local feedback interactions. However, there is a paucity of knowledge on the extent to which such community shifts may occur, on the dynamics of changes and on the putative effects regarding the functioning of ecosystems. We have used Citrus-‘Candidatus Liberibacter asiaticus’ [Las, causal agent of devastating Huanglongbing (HLB) disease] as a host pathogen model to characterize the structure, function and interactions of plant-associated microbial communities. We applied a suit of metagenomic techniques to provide detailed census of citrus associated microbiomes. Our results confirmed that Las is the sole causal agent of HLB in Florida and revealed that HLB significantly re-structures the composition of native microbial community present either in leaf, roots and rhizosphere of citrus. Functional microarray (Geochip) and shotgun metagenomic sequencing showed that HLB has severe effects on various functional guilds of bacteria involved in key ecological processes including nitrogen cycling and carbon fixation. Overall, the metagenomic studies provided evidence that change in plant physiology mediated by Las infection could elicit shifts in the composition and functional potential of plant associated microbial communities. In the long term, these fluctuations might have important implications for the productivity and sustainability of citrus producing agro-ecosystems.

Syndicate content