The Centre for Systems Genomics is holding a 1-day symposium on metagenomics and microbiome research, Tuesday November 17 at Bio21. 

Interested in presenting? Register now! and complete the abstract section.

This free event will feature talks on a range of microbiome-related topics including new computational and lab methods, covering a range of application areas including the human microbiome in health and disease, environmental metagenomics, ecology, agriculture and ancient DNA.

Event Date: 
Wednesday, January 28, 2015 - 19:00 - 19:45
University of Sydney

The use of genomics in diagnostic and public health microbiology


Since 2004 technological advances have enabled us to sequence more nucleic acid and generate more data in a shorter amount of time. Decreases in cost per nucleotide sequenced, the initial price of sequencing machines and the complexity of library construction means that whole genome sequencing (WGS) is available in many research labs and an increasing number of public health microbiology labs. I will examine the use of WGS in public health microbiology, particularly the possibility of investigating organisms without culture, the interrogation of genomes where PCR may be unavailable, outbreak investigation, tracking resistance mutations and novel pathogen discovery.

Event Date: 
Wednesday, March 26, 2014 - 18:00 - 18:15

Insights into the stress response of the biomining bacterium Acidithiobacillus ferrooxidans using gene expression and proteomic analysis


Bioleaching is a simple and effective process used for metal extraction from low grade ores and mineral concentrates using microorganisms. The extraction of some metals such as copper from low grade ore is becoming necessary because of gradual depletion of high grade ore. The traditional methods used for extraction of copper are either Pyrometallurgy or Hydrometallurgy. However both the methods are not environmental friendly. There are many techniques proposed to extract metals but these are not practically suitable, as these requires a very high energy input as well as most of them creates environmental pollution problem, that also rises the cost of environmental protection throughout the world. Therefore, bioleaching is recognizable as the most environmentally friendly method of separating metals since it requires less energy and it reduces the amount of greenhouse gasses released to the atmosphere. Bioleaching is also a fairly simple process that does not require a lot of expertise to operate or complicated machinery.
The most commonly used bacterium in bioleaching is Acidithiobacillus ferrooxidans (former Thiobacillus ferrooxidans) and this is due to its capacity to oxidize metal sulphides. A. ferroxidans is a chemolithotrophic bacterium capable of utilizing ferrous iron or reduced sulphur compounds as the sole source of energy for its growth. It thrives optimally around pH 2.0 and 30ºC. During Bioleaching process, A. ferrooxidans is often subject to changes in the ideal growth pH and temperature, and to nutrients starvation. These changes can affect the bacterial physiology and as a consequence, the efficiency of bioleaching. Then, the stress response of this bacterium subject to heat stress and phosphate starvation has been investigated using different approaches, namely, gene expression and proteomic analysis, Fourier transform infrared spectroscopy (FT-IR), as well as morphological analysis by scanning electron microscopy (SEM).
The results showed that under the tested stress conditions A. ferrooxidans cells suffer elongation, a common stress response in bacteria. Alterations in carbohydrates, phospholipids and phosphoproteins were detected by FT-IR. By proteomic analyses (2-DE and tandem mass spectrometry), many differentially expressed protein spots were visualized and identified as proteins belonging to 11 different functional categories. Indeed, the up-regulated proteins were mainly from the protein fate category. Real time quantitative PCR was employed to analyze changes in the expression patterns of heat shock genes, as well as many other genes encoding proteins related to several functional categories in A. ferrooxidans. Cells were submitted to long-term growth and to heat shock, both at 40°C. The results evidenced that heat shock affected the expression levels of most genes while long-term growth at 40°C caused minimal changes in gene expression patterns – with exception of some iron transport related genes, which were strongly down-regulated. Further bioinformatic analysis indicated a putative transcriptional regulation, by the σ32 factor, in most heat-affected genes. These results evidence that A. ferrooxidans has an efficient range of stress-responses, which explains its ability for biotechnological purposes.

Event Date: 
Wednesday, January 29, 2014 - 18:00 - 18:15
UC Davis

Hi-C Metagenomics: Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products


Metagenomics is a valuable tool for the study of microbial communities but has been limited by the difficulty of “binning” the resulting sequences into groups corresponding to the individual species and strains that constitute the community. Moreover, there are presently no methods to track the flow of mobile DNA elements such as plasmids through communities or to determine which of these are co-localized within the same cell. We address these limitations by applying Hi-C, a technology originally designed for the study of three-dimensional genome structure in eukaryotes, to measure the cellular co-localization of DNA sequences. We leveraged Hi-C data generated from a synthetic metagenome sample to accurately cluster metagenome assembly contigs into a small number of groups that differentiated the genomes of each species. The Hi-C data also associated plasmids with the chromosomes of their host and with each other orders of magnitude more frequently than to other species. We further demonstrated that Hi-C data is highly informative for resolving strain-specific genes and nucleotide substitutions between two closely related E. coli strains, K12 DH10B and BL21 (DE3), indicating such data may be useful for high-resolution genotyping of microbial populations. Our work demonstrates that Hi-C sequencing data provide valuable information for metagenome analyses that are not currently obtainable by other methods. This application of Hi-C has the potential to provide new perspective in the study of thefine-scale population structure of microbes, how antibiotic resistance plasmids (or other genetic elements) mobilize in microbial communities, and the genetic architecture ofheterogeneous tumor clone populations.

Event Date: 
Monday, February 24, 2014 - 09:30 - Tuesday, February 25, 2014 - 17:00


Registration Closed

24-25 February 2014
The Australian Museum

Microbiology is undergoing a revolution bought about by advances in next-generation DNA sequencing technology.  Researchers are now required to understand an array of bioinformatics principles and tools to interpret the vast amounts of data being generated. Presented by leading Australian researchers, TOAST is a 2-day event aimed at postgraduate students and early career postdocs providing in-depth tutorials encompassing concepts and software available to molecular microbiologists and microbial ecologists including:

Event Date: 
Wednesday, April 24, 2013 - 19:15 - 20:00
University of Technology Sydney

Observing the developing infant gut microbiome with time-series metagenomics.


The human body plays host to a complex microbial ecosystem, the
development of which begins around the time of birth. Routine monitoring
of the development of microbial ecosystems in newborns (or other
environments) using metagenomic methods is currently extremely
challenging and expensive. I will describe some recent technological
advances that could enable routine sequencing and computational analysis
of hundreds of metagenomes, and demonstrate their application on samples
taken from a developing infant gut microbiome. In this study forty-five
samples were subjected to transposon-catalyzed Illumina library prep and
metagenomic sequencing on a HiSeq 2000 instrument. The resulting data
was subjected to analysis of microbial community structure using a new
approach called phylogenetic Edge Principal Component Analysis (Edge
PCA) that can identify which lineages in a phylogeny explain the
greatest degree of variation among the samples. We also investigate the
population genomics of Bacteroides thetaiotaomicron, one of the dominant
members of the gut microbial community.

Professor Jill Banfield presents a public lecture entitled 'Metagenomic views of the microbial biosphere within us and in the world below us'.
9th July 2012, 6 pm for a 6:30 pm start
Tyree Room Scientia Building, University of New South Wales (Map ref G19)
Light capapes and refrshments will be served
RSVP essential: or phone 93857919

Reference: JOB255
Location: Long Beach, CA, United States
Application deadline: CLOSED
Syndicate content