Gram-negative bacteria

Event Date: 
Wednesday, October 28, 2015 - 18:15 - 18:30
Institution: 
UTS
Title: 

Heterogeneity in diazotroph diversity and activity within a putative hotspot for marine nitrogen fixation

Abstract: 

Australia’s tropical waters represent predicted “hotspots” for nitrogen (N2) fixation based on empirical and modelled data. However, the identity, activity and ecology of N2 fixing bacteria (diazotrophs) within this region are virtually unknown. By coupling DNA and cDNA sequencing of nitrogenase genes (nifH) with size fractionated N2 fixation rate measurements, we elucidated diazotroph dynamics across the shelf region of the Arafura and Timor Seas (ATS) and oceanic Coral Sea during Austral spring and winter. During spring, Trichodesmium dominated ATS assemblages, comprising 60% of nifH DNA sequences, while Candidatus Atelocyanobacterium thalassa (UCYN-A) comprised 42% in the Coral Sea. In contrast, during winter the relative abundance of heterotrophic unicellular diazotrophs (∂-proteobacteria and gamma-24774A11) increased in both regions, concomitant with a marked decline in UCYN-A sequences, whereby this clade effectively disappeared in the Coral Sea. Conservative estimates of N2 fixation rates ranged from < 1 to 91 nmol L-1 d-1, and size fractionation indicated that unicellular organisms dominated N2 fixation during both spring and winter, but average unicellular rates were up to 10-fold higher in winter than spring. Relative abundances of UCYN-A1 and gamma-24774A11 nifH transcripts negatively correlated to silicate and phosphate, suggesting an affinity for oligotrophy. Our results indicate that Australia’s tropical waters are indeed hotspots for N2 fixation, and that regional physicochemical characteristics drive differential contributions of cyanobacterial and heterotrophic phylotypes to N2 fixation.

Event Date: 
Wednesday, October 29, 2014 - 18:15 - 18:30
Institution: 
UTS
Title: 

Stigmergic social behaviours facilitate the active expansion of Pseudomonas aeruginosa interstitial biofilms.

Abstract: 

Erin S. Gloag1, Awais Javed2, Huabin Wang3, Michelle L. Gee3, Scott A. Wade2, Lynne Turnbull1, Cynthia B. Whitchurch1*
1 The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
2 Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
3 School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia.
 
Biofilms are often found associated with infections of implantable medical devices; accounting for approximately half of all nosocomial infections. Biofilms are often thought of as sessile surface-attached communities that are embedded in a protective slimy matrix. However, many bacterial pathogens also have the capacity to actively expand their biofilm communities via complex multi-cellular behaviours. We have observed that when P. aeruginosa is cultured at the interstitial surface between a coverslip and solidified nutrient media the resulting biofilm actively expands via twitching motility and is characterised by the formation of an extensive pattern of interconnected trails.
We set out to identify the factors governing pattern formation and coordinated movement during P. aeruginosa interstitial biofilm expansion. Our observations have revealed that during biofilm migration the cells at the advancing edge create furrows as they migrate across the semi-solid media The following cells are preferentially confined to these furrows, resulting in the emergence of an interconnected furrow network and the subsequent extensive large scale-patterning characteristic of these biofilms.
Stigmergy is a concept which describes self-organisation processes observed in higher organisms and abiotic systems through indirect communication via persistent cues in the environment left by individuals that influence the behavior of other individuals of the group at a later point in time. Our observations indicate that self-organised pattern formation in P. aeruginosa interstitial biofilms is also a stigmergic phenomenon. To our knowledge this is the first time that stigmergy has been identified as a mechanism of self-organisation of bacterial biofilms and propose that the concept of stigmergy can be included in the repertoire of systems used by bacteria to co-ordinate complex multicellular behaviours. We are currently exploring the development of novel antimicrobial strategies aimed at controlling and inhibiting biofilm expansion in medical settings via exploiting our new understanding of biofilm expansion.

Event Date: 
Wednesday, August 27, 2014 - 18:00 - 18:15
Institution: 
USyd
Title: 

Bowel movement: resistance plasmid transfer in the gut

Abstract: 

The treatment of endogenous infections caused by commensal Escherichia coli are often complicated by antibiotic resistance. Strains of resistant E. coli in the gastrointestinal tract serve as a reservoir of resistance determinants, and dissemination of resistance genes is often facilitated by conjugative plasmids. It is important to understand these plasmids in order to track the movement of resistance determinants between populations.
 
Three faecal E. coli isolates from a healthy adult were examined. Two of these (838-98B and -3B) were resistant to ampicillin (Ap), streptomycin (Sm) and sulphamethoxazole (Su). The other (838-50A) was susceptible. 838-50A and -3B were indistinguishable by biochemical and molecular analysis (API20E, phylogenetic group PCR, RAPD). 838-98B was a distinct strain. B/O plasmid replicons were detected in both resistant isolates using PCR-based plasmid replicon typing. A B/O replicon was not detected in the susceptible strain. This suggested that a plasmid bearing a B/O replicon might be responsible for ApSmSu resistance. Conjugation experiments with a laboratory adapted E. coli strain (UB5201) confirmed that the movement of a B/O plasmid from both 838-98B and -3B conferred ApSmSu resistance. Plasmid sequencing revealed that an identical B/O plasmid, p838B-R (94.8kb), was present in 838-98B and -3B, and carried ApSmSu resistance determinants. p838B-R was also observed to mobilise small plasmids, allowing the direction of in situ transfer to be determined.
 
The observed transfer of antibiotic resistance plasmid p838B-R between two unrelated strains in the gastrointestinal tract highlights the important role commensal bacteria play in the spread of resistance determinants. While not well documented, the association of B/O-type plasmids with antibiotic resistance is evident not only through p838B-R but also other available plasmid sequences. Further studies will allow us to determine the extent to which these plasmids influence antibiotic resistance in commensal E. coli

Event Date: 
Wednesday, July 30, 2014 - 19:00 - 19:45
Institution: 
UTS
Title: 

The production of public goods in bacterial biofilms

Abstract: 

“Public goods” in bacterial communities are extracellular products that are released by a sub-set of individuals that provide benefits to the local population.  Extracellular DNA (eDNA) is a public good that has been found to be required for the formation of sessile biofilms by many species of bacteria including Pseudomonas aeruginosa.  We have recently shown that eDNA also facilitates the active expansion of P. aeruginosa biofilms by engineering the formation of a network of interconnected furrows and directing traffic flow throughout the furrow network to efficiently supply cells to the leading edge of the expanding biofilm. The mechanism by which eDNA is produced by P. aeruginosa and many other bacterial species is poorly understood. We have discovered a novel mechanism that accounts for the production of eDNA as well as other “public goods” in P. aeruginosa biofilms. 

Event Date: 
Wednesday, April 30, 2014 - 18:00 - 18:15
Institution: 
School of Biotechnology and Biomolecular Sciences UNSW
Title: 

The roles of extracellular DNA in bacterial biofilm formation

Abstract: 

Bacterial biofilm formation is dependent upon production of extracellular polymeric substances (EPS) mainly composed of polysaccharides, proteins, lipids and extracellular DNA (eDNA). eDNA promotes initial bacterial adhesion, aggregation, biofilm formation in a wide range of bacterial species. In Pseudomonas aeruginosa eDNA is a major component of biofilms and is essential for biofilm formation and stability. P. aeruginosa also produces phenazine an electrochemically active metabolite and phenazine production promotes eDNA release. The relationship between eDNA release and phenazine production is bridged via hydrogen peroxide (H2O2) generation and subsequent H2O2 mediated cell lysis and ultimately release of chromosomal DNA into the extracellular environment as eDNA. Recent investigation showed pyocyanin (a kind of phenazine predominantly produced by P. aeruginosa) binds to eDNA mediated through intercalation of pyocyanin with eDNA. Pyocyanin binding to DNA has significant impacts on DNA properties and also on P. aeruginosa cell surface properties including its hydrophobicity, attractive surface energies physico-chemical interactions and bacterial aggregation.

Event Date: 
Wednesday, May 29, 2013 - 18:15 - 18:30
Institution: 
Macquarie University
Title: 

Dissemination of antibiotic resistance determinants via sewage discharge from Davis Station, Antarctica

Abstract: 

Discharge of untreated or macerated sewage presents a significant risk to Antarctic marine ecosystems by introducing non-native microorganisms that potentially impact microbial communities and threaten health of Antarctic wildlife. Despite these risks, disposal of essentially untreated sewage continues in the Antarctic and sub-Antarctic. As part of an environmental impact assessment of the Davis Station, we investigated carriage of antibiotic resistance determinants in Escherichia coli isolates from marine water and sediments, marine invertebrates (Laturnula and Abatus), birds and mammals within 10 km of the Davis sewage outfall. Class 1 integrons typical of human pathogens and commensals were detected in 12% of E. coli isolates. E. coli carrying these integrons were primarily isolated from the near shore marine water column and the filter feeding mollusc Laturnula. Class 1 integrons were not detected in E. coli isolated from seal (Miroungaleonina, Leptonychotes weddellii) or penguin (Pygoscelis adeliae) feces. However, isolation of E. coli from these vertebrates’ faeces was also low. Consequently, sewage disposal is introducing non-native microorganisms and associated resistance genes into the Antarctic environment. The impact of this “gene pollution” on the diversity and evolution of native Antarctic microbial communities is unknown. 

 

Event Date: 
Wednesday, April 24, 2013 - 18:00 - 18:15
Institution: 
University of Sydney
Title: 

Domesticating E. coli

Abstract: 

Adaptation of environmental bacteria to laboratory conditions can lead to modification of important traits, what we term domestication. Little is known about the rapidity and reproducibility of domestication changes, the uniformity of these changes within a species or how diverse these are in a single culture. We analysed phenotypic changes in nutrient-rich liquid media or on agar of four E. coli strains newly isolated through minimal steps from different sources. The laboratory-cultured populations showed changes in metabolism, morphotype, fitness and in phenotypes associated with the sigma factor RpoS. Domestication events and phenotypic diversity started to emerge within 2-3 days in replicate sub-cultures of the same ancestor. In some strains, increased amino acid usage and higher fitness under nutrient limitation resembled those in mutants with the GASP (Growth Advantage in Stationary Phase) phenotype. The domestication changes are not uniform across a species or even within a single domesticated population. However, some parallelism in adaptation within repeat cultures was observed. Differences in the laboratory environment also determine domestication effects, which differ between liquid and solid media or with extended stationary phase. Important lessons for the handling and storage of organisms can be based on these studies.

JAMS REPORT
Ani Penesyan
 
On the last Wednesday of spring we were spoiled with the room on the top floor of the Australian Museum and magnificent views of Sydney, yes, once again! Joining us were not only our regular JAMS crowd, but also visitors from Europe (yes, that is really cold in Europe during this time of the year!)
 

Syndicate content